Skip to contents

This function provides the marginal probability of invasive listeriosis in a given population for a given Dose in CFU using the JEMRA, the Pouillot, the Fritsch or the EFSA dose-response models or the model developed within this project (EFSAMV,EFSAV,EFSALV) (see References).

Usage

DRQuick(Dose, model = "JEMRA", population = 1, Poisson = FALSE)

Arguments

Dose

(CFU/serving) Dose (scalar or vector).

model

either JEMRA, Pouillot, Fritsch, EFSA, EFSAMV,EFSAV or EFSALV

population

considered population (scalar or vector).

Poisson

if TRUE, assume that Dose is the mean of a Poisson distribution. (actual LogNormal Poisson). If FALSE (default), assume that Dose is the actual number of bacteria.

Value

A vector of size Dose (if population is a scalar) or a matrix of dimension (length of the Dose vector x length of the population vector)

Details

ModelPopulationCharacteristics
JEMRA1Healthy population
JEMRA2Increased susceptibility
Pouillot1Less than 65 years old
Pouillot2More than 65 years old
Pouillot3Pregnancy
Pouillot4Nonhematological Cancer
Pouillot5Hematological cancer
Pouillot6Renal or Liver failure
Pouillot7Solid organ transplant
Pouillot8Inflammatory diseases
Pouillot9HIV/AIDS
Pouillot10Diabetes
Pouillot11Hear diseases
Fritsch1Highly virulent
Fritsch2Medium virulent
Fritsch3Hypovirulent
EFSA-EFSALV-EFSAV-EFSAMV1Female 1-4 yo
EFSA-EFSALV-EFSAV-EFSAMV2Male 1-4 yo
EFSA-EFSALV-EFSAV-EFSAMV3Female 5-14 yo
EFSA-EFSALV-EFSAV-EFSAMV4Male 5-14 yo
EFSA-EFSALV-EFSAV-EFSAMV5Female 15-24 yo
EFSA-EFSALV-EFSAV-EFSAMV6Male 15-24 yo
EFSA-EFSALV-EFSAV-EFSAMV7Female 25-44 yo
EFSA-EFSALV-EFSAV-EFSAMV8Male 25-44 yo
EFSA-EFSALV-EFSAV-EFSAMV9Female 45-64 yo
EFSA-EFSALV-EFSAV-EFSAMV10Male 45-64 yo
EFSA-EFSALV-EFSAV-EFSAMV11Female 65-74 yo
EFSA-EFSALV-EFSAV-EFSAMV12Male 65-74 yo
EFSA-EFSALV-EFSAV-EFSAMV13Female >75 yo
EFSA-EFSALV-EFSAV-EFSAMV14Male >75 yo

See the parameters in the JEMRA report.

Note

This function uses (for all model but JEMRA) a linear approximation (approxfun) from the exact DR() model evaluated on \(Dose = c(0,10^{seq(-5,12,length=1701)})\) (if Poisson=TRUE) or \(c(0,10^{seq(0,12,length=2000)})\) (if Poisson=FALSE). Any Dose lower or higher than these ranges will lead to NA.

References

EFSA (2018). “Scientific opinion on the Listeria monocytogenes contamination of ready-to-eat foods and the risk from human health in the EU.” EFSA Journal, 16(1), 5134.

FAO-WHO (2004). “Risk assessment of Listeria monocytogenes in ready-to-eat foods: Technical report.” World Health Organization and Food and Agriculture Organization of the United Nations.

Fritsch L, Guillier L, Augustin J (2018). “Next generation quantitative microbiological risk assessment: Refinement of the cold smoked salmon-related listeriosis risk model by integrating genomic data.” Microbial Risk Analysis, 10, 20--27. doi:10.1016/j.mran.2018.06.003 .

Pouillot R, Hoelzer K, Chen Y, Dennis SB (2015). “Listeria monocytogenes dose response revisited--incorporating adjustments for variability in strain virulence and host susceptibility.” Risk Analysis, 35(1), 90--108. doi:10.1111/risa.12235 .

Author

Regis Pouillot

Examples

# Compare DR and DRQuick
cbind(DR(1:10, model="Pouillot", population = 5), 
      DRQuick(1:10,  model="Pouillot", population = 5))
#>       Hematological cancer Hematological cancer
#>  [1,]         1.002798e-08         1.002798e-08
#>  [2,]         2.002244e-08         2.002244e-08
#>  [3,]         2.999631e-08         2.999631e-08
#>  [4,]         3.995300e-08         3.995300e-08
#>  [5,]         4.989462e-08         4.989462e-08
#>  [6,]         5.982261e-08         5.982261e-08
#>  [7,]         6.973809e-08         6.973809e-08
#>  [8,]         7.964192e-08         7.964192e-08
#>  [9,]         8.953481e-08         8.953481e-08
#> [10,]         9.941735e-08         9.941735e-08
DRQuick(1:10,  model="Pouillot", population = 2)
#>       More than 65 years old, no known underlying condition
#>  [1,]                                          1.553994e-10
#>  [2,]                                          3.107796e-10
#>  [3,]                                          4.661445e-10
#>  [4,]                                          6.214954e-10
#>  [5,]                                          7.768332e-10
#>  [6,]                                          9.321586e-10
#>  [7,]                                          1.087472e-09
#>  [8,]                                          1.242774e-09
#>  [9,]                                          1.398066e-09
#> [10,]                                          1.553346e-09