Dose-response model function for listeriosis - quick version
DRQuick.Rd
This function provides the marginal probability of invasive listeriosis
in a given population
for a given Dose
in CFU
using the
JEMRA
, the Pouillot
, the Fritsch
or the EFSA
dose-response models
or the model developed within this project (EFSAMV
,EFSAV
,EFSALV
) (see References).
Arguments
- Dose
(
CFU/serving
) Dose (scalar or vector).- model
either
JEMRA
,Pouillot
,Fritsch
,EFSA
,EFSAMV
,EFSAV
orEFSALV
- population
considered population (scalar or vector).
- Poisson
if
TRUE
, assume thatDose
is the mean of a Poisson distribution. (actual LogNormal Poisson). IfFALSE
(default), assume thatDose
is the actual number of bacteria.
Value
A vector of size Dose
(if population
is a scalar) or a matrix of
dimension (length of the Dose
vector x length of the population
vector)
Details
Model | Population | Characteristics |
JEMRA | 1 | Healthy population |
JEMRA | 2 | Increased susceptibility |
Pouillot | 1 | Less than 65 years old |
Pouillot | 2 | More than 65 years old |
Pouillot | 3 | Pregnancy |
Pouillot | 4 | Nonhematological Cancer |
Pouillot | 5 | Hematological cancer |
Pouillot | 6 | Renal or Liver failure |
Pouillot | 7 | Solid organ transplant |
Pouillot | 8 | Inflammatory diseases |
Pouillot | 9 | HIV/AIDS |
Pouillot | 10 | Diabetes |
Pouillot | 11 | Hear diseases |
Fritsch | 1 | Highly virulent |
Fritsch | 2 | Medium virulent |
Fritsch | 3 | Hypovirulent |
EFSA-EFSALV-EFSAV-EFSAMV | 1 | Female 1-4 yo |
EFSA-EFSALV-EFSAV-EFSAMV | 2 | Male 1-4 yo |
EFSA-EFSALV-EFSAV-EFSAMV | 3 | Female 5-14 yo |
EFSA-EFSALV-EFSAV-EFSAMV | 4 | Male 5-14 yo |
EFSA-EFSALV-EFSAV-EFSAMV | 5 | Female 15-24 yo |
EFSA-EFSALV-EFSAV-EFSAMV | 6 | Male 15-24 yo |
EFSA-EFSALV-EFSAV-EFSAMV | 7 | Female 25-44 yo |
EFSA-EFSALV-EFSAV-EFSAMV | 8 | Male 25-44 yo |
EFSA-EFSALV-EFSAV-EFSAMV | 9 | Female 45-64 yo |
EFSA-EFSALV-EFSAV-EFSAMV | 10 | Male 45-64 yo |
EFSA-EFSALV-EFSAV-EFSAMV | 11 | Female 65-74 yo |
EFSA-EFSALV-EFSAV-EFSAMV | 12 | Male 65-74 yo |
EFSA-EFSALV-EFSAV-EFSAMV | 13 | Female >75 yo |
EFSA-EFSALV-EFSAV-EFSAMV | 14 | Male >75 yo |
See the parameters in the JEMRA report.
Note
This function uses (for all model but JEMRA
) a linear approximation (approxfun
)
from the exact DR()
model evaluated on \(Dose = c(0,10^{seq(-5,12,length=1701)})\)
(if Poisson=TRUE
) or \(c(0,10^{seq(0,12,length=2000)})\) (if Poisson=FALSE
).
Any Dose lower or higher than these ranges will lead to NA
.
References
EFSA (2018). “Scientific opinion on the Listeria monocytogenes contamination of ready-to-eat foods and the risk from human health in the EU.” EFSA Journal, 16(1), 5134.
FAO-WHO (2004). “Risk assessment of Listeria monocytogenes in ready-to-eat foods: Technical report.” World Health Organization and Food and Agriculture Organization of the United Nations.
Fritsch L, Guillier L, Augustin J (2018). “Next generation quantitative microbiological risk assessment: Refinement of the cold smoked salmon-related listeriosis risk model by integrating genomic data.” Microbial Risk Analysis, 10, 20--27. doi:10.1016/j.mran.2018.06.003 .
Pouillot R, Hoelzer K, Chen Y, Dennis SB (2015). “Listeria monocytogenes dose response revisited--incorporating adjustments for variability in strain virulence and host susceptibility.” Risk Analysis, 35(1), 90--108. doi:10.1111/risa.12235 .
Examples
# Compare DR and DRQuick
cbind(DR(1:10, model="Pouillot", population = 5),
DRQuick(1:10, model="Pouillot", population = 5))
#> Hematological cancer Hematological cancer
#> [1,] 1.002798e-08 1.002798e-08
#> [2,] 2.002244e-08 2.002244e-08
#> [3,] 2.999631e-08 2.999631e-08
#> [4,] 3.995300e-08 3.995300e-08
#> [5,] 4.989462e-08 4.989462e-08
#> [6,] 5.982261e-08 5.982261e-08
#> [7,] 6.973809e-08 6.973809e-08
#> [8,] 7.964192e-08 7.964192e-08
#> [9,] 8.953481e-08 8.953481e-08
#> [10,] 9.941735e-08 9.941735e-08
DRQuick(1:10, model="Pouillot", population = 2)
#> More than 65 years old, no known underlying condition
#> [1,] 1.553994e-10
#> [2,] 3.107796e-10
#> [3,] 4.661445e-10
#> [4,] 6.214954e-10
#> [5,] 7.768332e-10
#> [6,] 9.321586e-10
#> [7,] 1.087472e-09
#> [8,] 1.242774e-09
#> [9,] 1.398066e-09
#> [10,] 1.553346e-09