Marginal probability of invasive listeriosis over r
DRLogNormPoisson.Rd
The function DRLogNormPoisson()
provides the marginal probability of invasive listeriosis
in a given population for a given Dose
in CFU
. this function is not vectorized.
Usage
DRLogNormPoisson(
Dose,
meanlog10,
sdlog10,
Poisson = FALSE,
low = -Inf,
up = Inf,
silent = TRUE,
tol = 1e-20,
method = "integrate",
...
)
Arguments
- Dose
(
CFU/serving
) Dose (scalar or vector). It should be integers ifPoisson
isFALSE
.- meanlog10
the meanlog10 parameter of the distribution of
r
(parameter of the exponential model).- sdlog10
the sdlog10 parameter of the distribution of
r
(parameter of the exponential model).- Poisson
if
TRUE
, assume thatDose
is the mean of a Poisson distribution. (actual LogNormal Poisson). IfFALSE
(default), assume thatDose
is the actual number of bacteria.- low
lower value for the integration.
- up
upper value for the integration.
- silent
silent the error-try function.
- tol
relative tolerance. Note: for
method = "cubature"
, the tolerance will be set to \(1E-05\).- method
either "integrate" (default) or
"cubature"
to specify the integration method.- ...
further arguments to pass to the integrate function.
Details
The function evaluates
$$\int_{low}^{inf} \Phi(x, mulog_{10}, sdlog_{10})\cdot(1-e^{(-Dose \cdot 10^{r})}) dr$$
using the integrate
function, with a relative tolerance equals to tol
if Poisson
is TRUE
. If Poisson
is FALSE
, it evaluates
$$\int_{low}^{inf} \Phi(x, mulog_{10}, sdlog_{10})\cdot(1-(1-10^{r})^{Dose}) dr$$.
For method = "cubature"
, the tolerance will be set to \(1E-5\).
method = "cubature"
will use the \link[cubature]{hcubature}
function that
is much slower but guarantees a tolerance of \(1E-5\).
Note
This function is used by the DR()
function, a wrapper of DRLogNormPoisson()
.
For a quick, vectorized version of it, use DRQuick()
.
References
Pouillot R, Hoelzer K, Chen Y, Dennis SB (2015). “Listeria monocytogenes dose response revisited--incorporating adjustments for variability in strain virulence and host susceptibility.” Risk Analysis, 35(1), 90--108. doi:10.1111/risa.12235 .